\begin{tabbing} $\forall$$A$, $B$:Type, $f_{0}$:$A$, $g_{0}$:$B$, $F$:($\mathbb{N}\rightarrow$$A$$\rightarrow$$B$$\rightarrow$$A$), $G$:($\mathbb{N}\rightarrow$$A$$\rightarrow$$B$$\rightarrow$$B$). \\[0ex]$\exists$\=$f$:$\mathbb{N}\rightarrow$$A$\+ \\[0ex]$\exists$\=$g$:$\mathbb{N}\rightarrow$$B$\+ \\[0ex]($f$(0) = $f_{0}$ \\[0ex]\& $g$(0) = $g_{0}$ \\[0ex]\& ($\forall$$s$:$\mathbb{N}^{+}$. $f$($s$) = $F$($s$ {-} 1,$f$($s$ {-} 1),$g$($s$ {-} 1)) \& $g$($s$) = $G$($s$ {-} 1,$f$($s$ {-} 1),$g$($s$ {-} 1)))) \-\- \end{tabbing}